Transcriptional repression by the Drosophila giant protein: cis element positioning provides an alternative means of interpreting an effector gradient.
نویسندگان
چکیده
Early developmental patterning of the Drosophila embryo is driven by the activities of a diverse set of maternally and zygotically derived transcription factors, including repressors encoded by gap genes such as Krüppel, knirps, giant and the mesoderm-specific snail. The mechanism of repression by gap transcription factors is not well understood at a molecular level. Initial characterization of these transcription factors suggests that they act as short-range repressors, interfering with the activity of enhancer or promoter elements 50 to 100 bp away. To better understand the molecular mechanism of short-range repression, we have investigated the properties of the Giant gap protein. We tested the ability of endogenous Giant to repress when bound close to the transcriptional initiation site and found that Giant effectively represses a heterologous promoter when binding sites are located at -55 bp with respect to the start of transcription. Consistent with its role as a short-range repressor, as the binding sites are moved to more distal locations, repression is diminished. Rather than exhibiting a sharp 'step-function' drop-off in activity, however, repression is progressively restricted to areas of highest Giant concentration. Less than a two-fold difference in Giant protein concentration is sufficient to determine a change in transcriptional status of a target gene. This effect demonstrates that Giant protein gradients can be differentially interpreted by target promoters, depending on the exact location of the Giant binding sites within the gene. Thus, in addition to binding site affinity and number, cis element positioning within a promoter can affect the response of a gene to a repressor gradient. We also demonstrate that a chimeric Gal4-Giant protein lacking the basic/zipper domain can specifically repress reporter genes, suggesting that the Giant effector domain is an autonomous repression domain.
منابع مشابه
Deciphering a transcriptional regulatory code: modeling short-range repression in the Drosophila embryo
Systems biology seeks a genomic-level interpretation of transcriptional regulatory information represented by patterns of protein-binding sites. Obtaining this information without direct experimentation is challenging; minor alterations in binding sites can have profound effects on gene expression, and underlie important aspects of disease and evolution. Quantitative modeling offers an alternat...
متن کاملThe SERTAD protein Taranis plays a role in Polycomb-mediated gene repression
The Polycomb group (PcG) proteins have been implicated in epigenetic transcriptional repression in development, stem cell maintenance and in cancer. The chromodomain protein Polycomb (Pc) is a key member of the PcG. Pc binds to the histone mark, trimethylated histone 3 lysine 27 (H3K27me3), to initiate transcriptional repression. How PcG proteins are recruited to target loci is not fully unders...
متن کاملExpression of wingless in the Drosophila embryo: a conserved cis-acting element lacking conserved Ci-binding sites is required for patched-mediated repression.
Patterning of the Drosophila embryo depends on the accurate expression of wingless (wg), which encodes a secreted signal required for segmentation and many other processes. Early expression of wg is regulated by the nuclear proteins of the gap and pair-rule gene classes but, after gastrulation, wg transcription is also dependent on cell-cell communication. Signaling to the Wg-producing cells is...
متن کاملA Single cis Element Maintains Repression of the Key Developmental Regulator Gata2
In development, lineage-restricted transcription factors simultaneously promote differentiation while repressing alternative fates. Molecular dissection of this process has been challenging as transcription factor loci are regulated by many trans-acting factors functioning through dispersed cis elements. It is not understood whether these elements function collectively to confer transcriptional...
متن کاملRole of CtBP in transcriptional repression by the Drosophila giant protein.
The giant protein is a short-range transcriptional repressor that refines the expression pattern of gap and pair-rule genes in the Drosophila blastoderm embryo. Short-range repressors including knirps, Krüppel, and snail utilize the CtBP cofactor for repression, but it is not known whether a functional interaction with CtBP is a general property of all short-range repressors. We studied giant r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 126 6 شماره
صفحات -
تاریخ انتشار 1999